
ABSTRACT 
Autonomous mobile nodes constitute a vision on the computer 
science for over a decade. The key feature of such nodes is their 
ability to dynamically adapt to contextual changes, through proper 
reconfiguration mechanisms. In this paper we present a framework 
for such self-adaptation that is mainly based on knowledge 
management technologies. Nodes specify their reconfiguration 
policies through rules and their reasoning processes are 
responsible for enforcing them. The approach adopted is cross-
layer and not restricted to specific reconfiguration scenarios. The 
architecture of this framework and its applicability to modern 
mobile networks is clearly described. Moreover, an experimental 
evaluation has been performed for both real and simulated 
scenarios.  

Categories and Subject Descriptors 
D.2.11 [Software Engineering]: Software Architectures - 
Domain-specific architectures 

General Terms 
Design, Management, Performance 

Keywords 
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1. INTRODUCTION 
Mobile ad hoc networks have found many real-life applications 

in the last years. Their advantage of being independent of any 
communication infrastructure has rendered them a perfect solution 
for many application domains, such as crisis management, first 
response, and vehicle-to-vehicle services. However, besides the ad 
hoc communications, what would be more interesting is their 
potential capability to behave in an autonomous way in all layers 
of operation. Such concept of autonomic behavior is referenced 
very often in the literature [19] and is also closely connected to 
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reconfiguration [14]. Several approaches have been also proposed 
for achieving real autonomic behavior in mobile networks (either 
structured or not) [15] [16]. However, most of them suffer from 
three basic limitations: 

 They focus on very specific reconfiguration actions (e.g., 
adjustment of some communication protocol parameters). 

 They do not address cross-layer reconfiguration in a realistic 
way. By “cross-layer” we mean that changes on the status 
of some layer (e.g., application) impose changes to certain 
functions of some other layer (e.g., network). 

 The implementation of the reconfiguration policies is not 
very easy and lacks extensibility. In most cases, the 
reconfiguration rules are hard-coded in the algorithms 
(e.g., routing [17]) and new reconfiguration policies are 
hard to apply. 

In this paper we try to address all these issues in a realistic 
way. Hence, the contributions of the proposed reconfiguration 
framework can be summarized to the following: 

 Reconfiguration policies can be defined for various 
elements/operations of a node (e.g., operation of peripheral 
devices, networking, application management). Hence, a 
very broad range of reconfiguration actions, at all layers, 
can be supported. 

 Such policies are defined through declarative rule languages 
and exploit knowledge models describing the node status 
and characteristics. Writing and updating such policies is a 
fairly easy process and does not require changes in the 
algorithms implementing the various services in the node. 

The main motivation for this work was provided by the EU-
funded IPAC (Integrated Platform for Autonomic Computing) 
research project (ICT framework). In Section 2, we describe the 
basic ideas and ingredients of the IPAC platform. Next, we 
describe in more detail the architecture and implementation of an 
IPAC node in Section 3. In the same section the middleware 
services implemented in the context of the IPAC platform are 
presented. The basic mechanisms for reconfiguration and the 
relevant workflows are discussed in Section 4. In this section we 
also present a sample use case for better describing the 
reconfiguration internals. The interested reader can find more 
details on the implementation of the proposed knowledge-based 
framework in Section 5. In Section 6, an extensive experimental 
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evaluation is performed that demonstrates the functionality of our 
system. The experimental results involve the deployment of the 
proposed system in real mobile devices as well as simulated 
scenarios. Finally, the paper concludes with some related work 
(Section 7) and directions for future research (Section 8).  

2. MOTIVATION 

2.1. The IPAC Platform 
This work has been performed in the context of the Integrated 

Platform for Autonomic Computing (IPAC) project [11]. IPAC 
aims at the delivery of a service creation and runtime (service 
provision) environment for autonomic nodes. IPAC tries to address 
several challenges of autonomic computing, such as reliable and 
efficient algorithms for information dissemination in autonomic 
environments, developer-friendly application creation, automatic 
discovery of deployed sensors and knowledge-based node 
reconfiguration. In this subsection, we briefly describe the overall 
platform. In the following sections we will focus on the 
reconfiguration facilities of the platform.  

The main parts of the IPAC platform (Figure 1) can be 
summarized as follows:  

 A developer-friendly graphical user interface (GUI) for 
building and debugging IPAC applications [18]. This GUI 
also comes with a domain-specific application definition 
language and the respective workflow language that 
enable developers to write applications in an intuitive 
way. 

 Short range communication (SRC) technologies along 
with a novel probabilistic information dissemination 
model. This model is based on the concepts of [2] and is 
appropriate for environments with nomadic nodes having 
limited energy resources. 

 Knowledge-based reconfiguration for embedded systems. 
IPAC is one of the first attempts to support mobile 
reasoning and related mechanisms for providing mobile 
service intelligence. Similar work in this area can be 
found in [3] [4].  

 Adoption of the IEEE 1451 [10] standard for 
implementing plug-and-play (smart) sensors. IEEE 1451 
is an evolving standard that promises a new era of sensor-
enabled applications, through easy integration of diverse 
sensor technologies. 

 Collaborative context-awareness. IPAC nodes can use 
contextual information for adapting the application 
execution even if they do not have attached sensors. 
Specifically, they can “harvest” sensor data and 
contextual events from their neighbourhood through a 
publish/subscribe mechanism [5].  

The IPAC platform aims at supporting embedded, intelligent, 
collaborative and context-aware applications in mobile nodes. 
IPAC can support a wide variety of applications targeting to a 
large group of users, in diverse environments and application 
domains. It is a flexible platform capable of implementing quite 
diverse application scenarios. It may be used in simple messaging 
systems, such as advertisements or weather updates, in emergency 

updates or even in a closed group of members where 
confidentiality is a prerequisite. In general, IPAC supports 
applications that mainly exchange simple data (human-created 
messages, sensor values etc.) in very highly dynamic environments 
(e.g., vehicular ad hoc networks). Of course more sophisticated 
applications can be supported but the main intention is to provide 
simple applications that can be created and used by a large target 
group of users, in diverse environments and application domains. 
The IPAC middleware provides all the required basic 
functionality, in the form of services, to the deployed applications. 

2.2. Requirements for Reconfiguration 
Mobile and autonomic computing environments contain the 

concept of dynamic changes and updates by nature. Hence, in 
order to effectively support context-aware applications in such 
environments, adaptivity to context changes is a crucial issue. 
Reconfiguration, at least in the context of this paper, involves all 
node settings that affect resources used by the deployed 
applications. Examples of such resources are: the communication 
interface and protocol, the user interface modality and layout, the 
storage allocated to each application and the application lifecycles.  

In the context of the IPAC platform, three essential types of 
reconfiguration actions have been identified and supported: 

(a) Periodic checks for reconfiguration. This type of 
reconfiguration is triggered by the middleware itself and not by 
some application request. It mainly tries to “optimize” the node 
operation. Such optimization may refer to various system 
parameters, such as energy consumption, and execution of 
applications that cannot be executed with the current 
configuration. 
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Figure 1. The IPAC Ecosystem 

(b) Check for reconfiguration on application startup. An 
application may not be able to run, even if it can be supported in 
general by the node. This may happen if the application needs 
some resources that are currently used by other applications, or the 
current settings (as defined by already running applications) do not 
match the preconditions for execution of the blocked application. 

(c) Explicit request by application. Every application is able to 
request certain reconfiguration actions to be performed during its 
execution. The middleware checks if such operations can be 
applied and informs the corresponding application respectively. 

3. SYSTEM OVERVIEW 

3.1. Node Description 
The architecture of an IPAC node is depicted in Figure 2. The 

main components of a typical IPAC node follow: 



IPAC middleware. It provides all the services required for 
supporting context-aware applications in nomadic environments. 
More details on the way context-awareness is supported in IPAC 
can be found in [5]. 

The hardware, OS and Java Virtual Machine (JVM) of the node. 

OSGi services [9] running within such a framework and providing 
utilities to the IPAC middleware services. 

Short Range Communication Component (SRCC). This component 
encompasses all the wireless communication capabilities required 
for the ad hoc networking of the node. Specifically, it provides 
various short range communication interfaces (such as IEEE 
802.11 ad hoc mode, WiseMac [12]). The communication is based 
on a probabilistic broadcasting data dissemination algorithm [8] 
that suits such dynamic mobile environments. The information 
dissemination schemes are also implemented here. 

Sensor Elements Component (SEC). It provides retrieval of 
measurements from sensors attached to the node and advanced 
sensor management routines (e.g., automatic discovery of new 
sensors, change of sampling frequency). 
IPAC applications. They are self-described and self-contained 
applications that include the application logic, an application 
profile, and, optionally, some user interface. 

 Figure 2. IPAC Node Overview 

3.2. Middleware Components and Services 
Inside the middleware there are several services and 

components. In this section we will describe how these 
components are involved in the reconfiguration processes: 

Application Manager. It controls and manages the application 
lifecycle on the node and makes the application profile available 
during the reconfiguration processes. 

Scheduler. This service is used by all other middleware services 
that need to schedule tasks that are performed periodically or in 
predefined moments in the future. The reconfiguration processes 
exploit scheduling for periodically checking and enforcing the 
corresponding policies. 

SRCC Proxy. This component is responsible for abstracting the 
Short Range Communication interfaces towards the applications. 

These interfaces are regarded as shared resources and are subject 
to reconfiguration. 

SEC Proxy. Similarly to the SRCC Proxy, this component 
abstracts the sensors attached to a node. 

Storage Service.  This component makes information available 
for later use, either within the node or through transmitting it over 
the radio interface. 

Reasoner Service. The Reasoner service constitutes the core 
component for realizing the autonomic behaviour of the IPAC 
nodes. Specifically, it is a Prolog-based engine able to support 
inferences over the IPAC models and policies. Reasoner is able to 
drive the self-adaptation process of the IPAC nodes and check 
possible conflicts regarding the resources shared among the IPAC 
applications, as well.  

Reconfiguration Service. The reconfiguration service manages all 
the processes that affect the self-adaptation of the node and the 
configuration of its settings. This service uses the API provided by 
the Reasoner service in order to perform certain reasoning tasks. 
More details are provided in the rest of the present paper. 

Event Checker Service (ECS). It implements the event-driven 
paradigm of the IPAC approach. For example, it is responsible for 
checking the conditions that may trigger the events defined in the 
profile of an application and may lead to a reconfiguration action. 

User Interaction Service. An application may need to receive 
input or give feedback to a human user. Similarly to the SRCC 
Proxy, the user interfaces provided by this component are 
considered as subject to reconfiguration. 

4. IPAC KNOWLEDGE PLANE 
Both context-aware re-configuration and interoperability 

between nodes with different features call for an intelligent system 
behavior, depending on the characteristics of each individual case 
(contextual information, node features, number of adjacent nodes, 
etc.). To meet these requirements, an architecture shift is 
necessary in the design of embedded systems middleware. 
Specifically, a new approach similar to the Knowledge Plane [23] 
is called for. Such approach includes all the necessary components 
in order to create a distributed cognitive system, which is aware of 
its goals, limitations, and resources. The IPAC Knowledge Plane 
operates also as a broker since it is able to disseminate to all 
layers of an IPAC node the status of the SRCC, SEC and other key 
modules of the service layer. For example, it may give feedback to 
the dissemination algorithms about the physical-layer networking 
operation of peer nodes. Some of the functions of this knowledge-
based framework follow:  

 models the possible situations (i.e., context) of the 
node/system,  

 stores the situation-information collected from the 
information sources (e.g., sensors),  

 reasons over contextual data, 

 identifies possible conflicts in the system configuration, 

 infers information based on real-time observations. 
The ingredients of this plane are described in this section.   



4.1. Language Expressiveness and Tractability 
of Reasoning 

The selection of the appropriate knowledge technologies 
involved two main steps: (a) the selection of an expressive logical 
formalism that meets the specified requirements (e.g., definition 
of rules and policies), and, (b) the selection of an efficient module 
able to reason over such language. The nature of the IPAC 
platform imposes certain restrictions regarding the adopted 
knowledge technologies. Since IPAC targets at mobile devices, the 
knowledge-based components of the middleware architecture had 
to be implemented with lightweight technologies that offer: (a) 
tractable reasoning services (i.e., low reasoning times and memory 
requirements), and, (b) compact representation of the knowledge 
bases.  

Regarding the selection of the appropriate knowledge 
representation language, the desired expressiveness is that of 
typical (Horn) rules with conjunctions of predicates in the body 
and single predicates in the head of the rules. Prolog-based 
implementations provide a very mature technology and its syntax 
and representation is very compact, in comparison to other 
technologies. Before deciding on the reasoning module that was 
used in IPAC, other solutions were also investigated, such as 
forward-chaining rule engines, and Description Logic reasoners. 
However, such solutions do not provide efficient reasoning 
services, thus making the execution of even simple reasoning tasks 
on embedded devices hard. More details about the adopted 
formalisms and tools can be found in Section 5. 

4.2. Models and Profiles 
In the context of this work, specific models are exploited in 

order to provide a common vocabulary to both the middleware 
services and applications. These models target at facilitating the 
self-reconfiguration of the nodes. Since they are used by the 
Reasoner and the Reconfiguration services of the IPAC 
middleware, the models are expressed in a declarative way 
through Prolog statements. Specifically, the following models and 
profiles are considered: 

4.2.1. Application Profile 
The application profile mainly consists of simple expressions 

representing the basic features of the IPAC application. These 
expressions concern generic description of the application or the 
requirements that a node should satisfy in order to deploy and 
execute the application. The former refers to information such as 
the application name, the application ID, its version or the 
supported user groups. Such knowledge is used in order to identify 
whether an application should be deployed to a node (e.g., newer 
version) or to allow user to join a group in the context of this 
application. As a result, the application profile takes advantage of 
the vocabulary provided by the sensor model. 

On the other hand, the execution requirements of an IPAC 
application typically concern preconditions that a node should 
fulfill before running the application such as communication 
requirements (e.g., communication range required, average size of 
message payload) and application parameters (e.g., required types 
of user interfaces, estimated storage space). These requirements 
are matched with the node capabilities provided by the node 
profile within the IPAC middleware. If such matching is 
successful (i.e., the node satisfies the application requirements) 

the application is deployed to the node and its execution is started. 
Otherwise, the node either deletes it or deploys it and sets it to an 
inactive state. 

Furthermore, the application events that constitute part of the 
application workflow are expressed declaratively in the 
application profile. Every application registers the types of 
information that is interested in through these events. The 
respective services (e.g., ECS) are responsible for creating the 
events at runtime by checking sensor data, incoming messages, 
etc. Each event is defined through a name and a number of 
conditions. A simple example demonstrating an application profile 
is provided below: 
usesSensor(appID03, smoke_det_1). 
type(smoke_det_1, smoke_detector). 
usesSensor(appID03, temp_sensor_1). 
type(temp_sensor_1, temperature_sensor). 
requiresUI(appID03, visual). 

event(fire_alarm) :- smoke_det_1>=0, 
temp_sensor_1>=20. 

In this example, the profile of an application that uses a smoke 
detector and a temperature sensor and requires a visual interface is 
given. In case of smoke detection and temperature exceeding a 
limit value (i.e., 20 degrees), a specific event named “fire_alarm” 
is raised. 

4.2.2. Sensor Model 
It provides a common vocabulary about sensors and their 

features. This way, a set of common terms is shared between the 
nodes and the different components of the platform, as well. This 
model defines the concepts (i.e., classes, terms) that concern the 
basic characteristics of sensors and the relationships among them. 
Specifically, it contains information about the type of the sensor 
(e.g. positioning sensor, movement detector). Such information is 
modelled through predicate hierarchies (taxonomies) in order to 
take advantage of instances classification during the execution of 
reasoning processes. For example, a sensing element that is 
defined as a temperature sensor is also classified as a sensor 
(which could be considered as the top class) aiming to identify 
environmental conditions. Moreover, the model is capable of 
representing a description of the sensor, the types of values that it 
produces and their measurement units. For example, a temperature 
sensor may return integer values denoting Celsius degrees. Some 
example statements of the sensor model that define a part of the 
designed hierarchy of sensor types are the following: 
sensorType(X) :- 
environmentalConditionSensor(X). 
environmentalConditionSensor(X) :- 
temperatureSensor(X). 
temperatureSensor(temperature_sensor). 

4.2.3. Node Profile 
It defines concepts and relationships that refer to the basic 

features of an IPAC node. It is the core of the metadata models 
used in the platform. Specifically, in order to express such 
knowledge, this profile takes advantage of the vocabulary offered 
by the sensor model. Some metadata belonging to the node profile 
are the communication interfaces provided by the node, its name, 
the available storage space and the supported user interfaces. 



Furthermore, it provides information about the sensors that are 
attached to the node. An example of a node profile follows: 
node(node03). 
supportsUI(node03,visual). 
hasSensor(node03,sensor05). 
hasSensor(node03,sensor06). 
hasCommInterface(node03,ieee_802_11_int). 
type(sensor05, temperature_sensor). 
type(sensor06, smoke_detector). 

The aforementioned statements describe a node (with ID node03) 
with a temperature sensor (i.e., sensor05) and a smoke detector 
(i.e., sensor06) attached. The node also supports visual interfaces 
and the IEEE 802.11 communication interface, as well. 

4.3. Reconfiguration Policies 
The IPAC Knowledge Plane also involves some predefined 

reconfiguration policies that trigger updates in its settings in order 
to achieve optimal operation of the node. The reconfiguration 
policies are rules defining changes that could be performed so that 
the optimal operation of the node is guaranteed. In general, these 
hard-coded policies aim to prevent the occurrence of unacceptable 
situations that could deteriorate system performance. Moreover, 
they may raise events in case the system status is error-prone. 
Similarly to the application events, the node policies are also 
represented declaratively, since they constitute part of the overall 
knowledge base. Two sample reconfiguration policies are:  
policy(hasCommInterface,X,wisemac_int):- 
numberOfNeighbors(X,N), N=0, node(X), 
hasCommInterface(X,ieee_802_11_int). 

policyPA(turnInterfaceOn,wisemac_int):- 
numberOfNeighbors(X,N), N=0, node(X), 
hasCommInterface(X,ieee_802_11_int). 

policy(hasCommInterface,X,ieee_802_11_int):- 
numberOfNeighbors(X,N), N=0, node(X), 
hasCommInterface(X,wisemac_int). 

policyPA(turnInterfaceOn,ieee_802_11_int):- 
numberOfNeighbors(X,N), N=0, node(X), 
hasCommInterface(X,wisemac_int). 

A natural language description for the above set of rules is: 
“Change the current communication interface in case no 
neighbours have been detected”. Hence, the node should switch 
from its current communication interface to another (e.g., from 
IEEE 802.11 to WiseMac). The policy predicate defines the new 
facts that should be asserted and the policyPA predicate defines 
the middleware method call that applies this reconfiguration (in 
this case the turnInterfaceOn() method of the SRCC Proxy 
service). In that case, the node profile is updated with the 
information that no other node has been detected in the vicinity by 
the node. Since the policies are checked periodically, the next time 
that such a check will take place, the Reconfiguration service will 
call the appropriate middleware services (e.g., the SRCC Proxy to 
modify the communication interface, the User Interaction Service 
to change the user interface) in order to make the required 
modification and will also update the node profile. 

4.4. Reconfiguration Workflow 
The overall approach that has been adopted for the design of 

IPAC middleware is that applications access directly the 
middleware services through well defined interfaces (i.e., method 
calls), but all methods that are responsible for altering the 
operation/configuration of the services are called through the 
Reconfiguration Service. The rationale behind this decision is that 
service and device settings are a shared resource and so it should 
be managed by a central entity. Moreover, global cross-layer 
knowledge may be necessary for some reconfigurations. We 
should not expect applications to maintain such knowledge.  

The typical reconfiguration workflow is as follows: An 
application sends a request for reconfiguration (it may affect a 
middleware service or the node/device settings). There are two 
main types of requests: the soft and the hard ones. The former are 
associated with some timeValidity parameter (e.g., “whenever, 
within the next five minutes, the UI is able to switch to sound 
mode, do it”). The applications do not require feedback from the 
system for such requests. Moreover, the applications should not 
make any assumptions on them. At the most, they can receive a 
notification when the requested change is performed. On the other 
hand, the hard requests should be executed immediately (if at all) 
and the application should receive some feedback whether the 
reconfiguration has been performed or not.  

Once a reconfiguration request arrives in the Reconfiguration 
service, the Reasoner service is invoked. The latter service decides 
if it is consistent with the current system status to perform the 
change requested. If not, and,  

a) it is a soft request with timeValidity set, then it just 
reschedules the request and checks it after a preset period 
of time.  

b) it is a hard request, it sends a response “reconfiguration 
not possible” to the Response Queue. 

If the change is possible, a message with the request 
parameters is sent to the Dispatcher Queue. Then the 
Reconfiguration Service consumes this message and performs the 
change requested with a synchronous method call. The result is 
inserted to the Response Queue (either “Success” or “Failure”). 
Finally, once a message destined for an application arrives at the 
Response Queue, the respective application consumes it and 
continues executing its application logic.  

 
Figure 3. UML Sequence Diagram of Reconfiguration Service 



Note that there could also be other services listening to the 
Response Queue. For example, if we want to provide self-healing 
functionality, we could observe which services return “Failure” 
and how often and use this information for recovering from this 
situation. All this interaction is depicted in the UML Sequence 
Diagram of Figure 3. 

4.5. Reconfiguration Scenario 
This use-case scenario describes the main tasks that take place 

within an IPAC node during the reconfiguration phase. The 
scenario assumes that application A (e.g., with id app02) is stored 
to an IPAC node (e.g., with id node03) in order to be deployed 
while other applications are already running inside the node and A 
requires audio interface to run properly (e.g., the statement 
requiresUI(app02,audio) has been added to its profile). The node 
supports both visual and audio user interfaces. Initially, it is 
assumed that the visual interface has been activated. Such 
knowledge is explicitly captured in the node profile through the 
following Prolog statements: 
supportsUI(node03, visual). 
supportsUI(node03, audio). 
hasUI(node03, visual). 

It is also assumed that the following event is defined in the 
profile of the application A: 
event(fire_alarm):-smoke_sensor_1>=0, 
temp_sensor_1>=20. 

This rule denotes that an event named “fire_alarm” is 
triggered when there some substance of smoke in the air and the 
temperature exceeds the limit of 20 degrees. Additionally, the 
application A requires a minimum communication range of 10 
meters and an audio user interface in order to run (denoted in its 
profile). 

First, the application manager checks whether the 
requirements of the new application are consistent with the 
requirements imposed by the applications that already run in the 
IPAC node. This is performed through the consistency checking 
mechanism provided by the Reasoner. Assuming that none of the 
already running applications have imposed any requirements 
regarding the user interface of the node, it can be switched to 
audio without any possible conflicts. Hence, a reconfiguration 
request is scheduled in order to perform the desired 
reconfiguration action. 

Regarding the policy checking mechanism, we assume that a 
policy denotes that in case there is no other node in the 
neighbourhood, the communication interface should change (see 
example in Section 4.3). In that case, the node profile is updated 
that no other node has been detected close to it through the SRCC. 
Hence, a policy violation is detected the first time that the 
checkPolicy() method is called. This method checks if any node 
reconfiguration can be performed based on the defined policies 
and returns the respective ReconfRequest objects. 

The checkPolicy() method invokes the Reasoner service in 
order to trigger the aforementioned rules (if all of their conditions 
are satisfied). If triggered, the method parses the asserted policy 
predicates and returns them to the method caller. For example, if 
the first policy rule is triggered, the following fact is returned 
(node03 is the ID of the node): 

hasCommInterface(node03, wisemac_int). 

If this function returns some facts, then these are used to 
create a new ReconfRequest object that is subsequently passed as 
an argument to the checkReconfRequest() method. This method 
checks if the request is in conflict with the current node 
configuration. If not, the facts of the ReconfRequest are asserted to 
the knowledge base and the respective middleware service 
methods are invoked. 

5. IMPLEMENTATION DETAILS 
The IPAC Knowledge Plane adopts a Prolog-based scheme in 

order to support the desired self-adaptive behaviour of the nodes. 
Hence, all the models, the policies and the application profiles are 
expressed as Prolog predicates. The implementation of this 
functionality takes advantage of Java Internet Prolog (JIProlog) [1] 
engine that constitutes a compact and computationally efficient 
Prolog interpreter facilitating the integration of Java and Prolog. 
JIProlog provides a Java API for creating and handling Prolog 
files. This API supports various management capabilities over 
knowledge bases that are expressed in Prolog terms (e.g., loading 
of multiple files, query answering). It is also a cross platform 
framework that enables the development of lightweight reasoning 
services on devices with restricted resources. Specifically, the 
J2ME (MIDP 2.0, CLDC 1.0) version of JIProlog was adopted for 
the IPAC Reasoner service. This solution performs better than 
reasoning over other knowledge representation methodologies, 
such as lightweight ontologies, since no efficient reasoning 
modules are available for these formalisms in resource constrained 
devices [6]. 

6. EXPERIMENTAL EVALUATION 
In this section, we discuss the performance of the 

reconfiguration tasks in typical IPAC nodes. Specifically, certain 
simulated scenarios were performed in order to quantify the 
loading times of the application profiles, the service response time 
and the memory consumption incurred during reconfiguration 
tasks. All measurements were performed in ASUS Eee PC 900 
netbooks [7] with an Intel (R) Celeron (R) processor running at 
900MHz and 1GB of main memory. These nodes are able to use 
both IEEE 802.11 and Wisemac communication interfaces and 
were equipped with a number of sensor devices to capture context 
information. 

The first measurement concerns the time needed to load the 
application profiles. While the rest of the models and profiles used 
(e.g., sensor model, node profile, etc.) can be loaded just once 
during the initialization of the IPAC platform, the application 
profiles have to be loaded and retracted at runtime whenever an 
application starts or stops operating in the node. The experiments 
demonstrate a linear dependency between the loading times and 
the number of application profiles. Specifically, the required time 
is proportional to the number of profiles inserted into the main 
memory. For example, it is worth mentioning that in case of two 
profiles, the total loading time is about 15ms. Even when 20 
applications were sequentially loaded, the total loading time does 
not exceed the 125ms which is an acceptable delay in real time 
applications. 

When a new application profile is loaded, the JIProlog engine 
inserts all the relevant rules and the facts to the main memory. As 



a result, the query answering process of the knowledge base is 
performed very efficiently. For example, even the evaluation of a 
query containing predicates defined through multiple Prolog rules 
with several conjunctive terms in their body requires less than 
16ms. The tests performed also indicate that such performance 
persists even when multiple application profiles are loaded to the 
main memory. Hence, real-time checks for complex queries (e.g., 
compatibility of a newly deployed application) do not negatively 
impact the overall response time of the system. 

Another issue examined was the sensitivity of the system 
according to context changes. Specifically, a modification of the 
environment (e.g., absence of other nodes in the neighborhood) 
may lead to the execution of certain reconfiguration policies (e.g., 
switch to another communication interface). Figure 4 presents the 
times between a context change that took place and the 
corresponding node reconfiguration. These times indicate the 
degree in which the system is responsive to context changes. The 
presented times include (a) the update of the knowledge base 
according to the modification made, (b) the policy execution, (c) 
the check of the applicability of the requested reconfiguration, 
and, (d) the execution of the reconfiguration. As described earlier, 
the execution of policies is performed very efficiently (in the main 
memory) and the reconfiguration is achieved through simple 
method calls. Since the policy execution is performed periodically 
(i.e., not asynchronously) the required time is mostly dependent on 
the policy checking period.  

 
Figure 4. Reconfiguration time in ASUS Eee PC 900 netbook 

Figure 4 presents the mean times needed to perform the node 
adaptation across several policy checking periods. One can 
observe that these times are approximately the half of the policy 
checking period used. For example, using a policy checking period 
of 1 sec, the mean reconfiguration time is 546ms, while setting the 
period to 20 sec the mean reconfiguration time is 10425 ms. This 
is anticipated since context changes occur at random. Hence, 
taking into account that the process of checking the policies does 
not require a significant amount of time, the policy checking 
period can be set to a small value (e.g., 1 sec) in order to increase 
the system throughput. 

Finally, we measured the memory consumption of the 
reconfiguration process depending on the number of the 
application profiles loaded in main memory (Figure 5). The mean 
size of each profile was about 4 KBs. When a single application is 
running in the node the total memory required was 20648 KBs 
(including all the required services, i.e., the Reasoner, the 
Scheduler and the Reconfiguration services) while in the case of 

20 application profiles the memory needed was measured 21214 
KBs. Hence, the mean memory size required for each profile was 
about 25 KBs. This is caused by the internal data structures and 
mechanisms used by the JIProlog engine when a new profile is 
added in order to answer possible queries more efficiently.  

 
Figure 5. Memory consumption in ASUS Eee PC 900 netbook 

7. RELATED WORK 
There are several attempts in the areas of autonomic 

computing and reconfigurable systems aiming to provide adaptive 
functionality and services. MASS [20] is an ontology-based 
middleware, aiming to enhance the design, development and 
provisioning of context-aware applications. It exploits ontologies 
to express semantic information in mobile devices with limited 
capabilities, which allows for automated reasoning and adaptation 
according to user profile and device capabilities. A similar 
approach is discussed in the Sense Project [21] which focuses on 
the adaptive behavior of the network processes and management. 
Furthermore, EMMA Project [22] emphasizes the seamless 
collaboration of wireless sensing elements in order to achieve 
intelligent behavior of services. However, none of the 
aforementioned platforms provides cross-layer reconfiguration of 
both applications and node settings. 

In the area of mobile service intelligence and reasoning, a 
framework capable of supporting ontology processing is proposed 
in [4]. The system takes advantage of RDF/OWL ontologies to 
represent contextual information stemming from sensors and 
provide reasoning and query answering services over the acquired 
data. Nevertheless, the system does not investigate the concept of 
re-configurability since it focuses on the knowledge management 
processes.  

A service discovery framework for mobile music selection is 
presented in [3]. The system exploits ontological models to 
capture user preferences and provide personalized discovery of 
audio content in mobile devices. However, the proposed 
framework focuses on the concepts of ontology-based relaxation of 
preferences and semantic matchmaking and does not investigate 
the re-configurability of the supported applications and devices. 

A policy-based information model for mobile ad hoc networks 
is presented in [17]. Specifically, the proposed solution allows for 
dynamic reconfiguration of the parameters that affect the routing 
protocol of the network. Also, a policy-based approach for 
reconfiguration in autonomous networks is presented in [15]. Such 
approaches lack extensibility since they are mainly based on hard-
coded policies and they focus on specific reconfiguration actions. 



8. CONCLUSION AND FUTURE WORK 
In this paper we presented a working implementation of a 

cross-layer reconfiguration framework capable of supporting 
context-aware applications in autonomic mobile nodes. The 
framework exploits knowledge management technologies and 
techniques in order to provide a flexible and extensible solution to 
node reconfiguration. All node configuration data are expressed 
through widely-established formalisms, such as Prolog rules and 
facts. The implemented architecture can support a broad range of 
reconfiguration scenarios. The functionality and performance of 
the system was evaluated through deployment on real nodes. 

Surely, several aspects of the systems can be improved and are 
part of our future plans on this area. We intend to use more 
modern knowledge representation languages for the 
implementation of the knowledge plane. Specifically, the use of 
lightweight, but adequately expressive, ontologies will be further 
investigated. The main problem with using ontologies is the lack 
of efficient reasoning engines in resource-restricted devices. Since 
the existing research prototypes [13] have not been tested in real 
world deployments, we plan to proceed with an assessment of such 
solutions in the near future. 

Another aspect that could be optimized involves the policy 
checking mechanism of the system. As described, the current 
IPAC approach checks for possible policy violations periodically. 
The selection of the appropriate value for this parameter could be 
optimized by taking into consideration a number of other issues 
like the history information of the node and the frequency of the 
policy violations. Event-based mechanisms to detect the context 
changes that affect the execution of policies should be also 
explored. 
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