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ABSTRACT

Autonomous mobile nodes constitute a vision on the computer
science for over a decade. The key feature of such nodes is their
ability to dynamically adapt to contextual changes, through proper
reconfiguration mechanisms. In this paper we present a framework
for such self-adaptation that is mainly based on knowledge
management technologies. Nodes specify their reconfiguration
policies through rules and their reasoning processes are
responsible for enforcing them. The approach adopted is cross-
layer and not restricted to specific reconfiguration scenarios. The
architecture of this framework and its applicability to modern
mobile networks is clearly described. Moreover, an experimental
evaluation has been performed for both real and simulated
scenarios.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures -
Domain-specific architectures

General Terms
Design, Management, Performance
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1. INTRODUCTION

Mobile ad hoc networks have found many real-life applications
in the last years. Their advantage of being independent of any
communication infrastructure has rendered them a perfect solution
for many application domains, such as crisis management, first
response, and vehicle-to-vehicle services. However, besides the ad
hoc communications, what would be more interesting is their
potential capability to behave in an autonomous way in all layers
of operation. Such concept of autonomic behavior is referenced
very often in the literature [19] and is also closely connected to
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reconfiguration [14]. Several approaches have been also proposed
for achieving real autonomic behavior in mobile networks (either
structured or not) [15] [16]. However, most of them suffer from
three basic limitations:

e They focus on very specific reconfiguration actions (e.g.,
adjustment of some communication protocol parameters).

e They do not address cross-layer reconfiguration in a realistic
way. By “cross-layer” we mean that changes on the status
of some layer (e.g., application) impose changes to certain
functions of some other layer (e.g., network).

e The implementation of the reconfiguration policies is not
very easy and lacks extensibility. In most cases, the
reconfiguration rules are hard-coded in the algorithms
(e.g., routing [17]) and new reconfiguration policies are
hard to apply.

In this paper we try to address all these issues in a realistic
way. Hence, the contributions of the proposed reconfiguration
framework can be summarized to the following:

e Reconfiguration policies can be defined for various
elements/operations of a node (e.g., operation of peripheral
devices, networking, application management). Hence, a
very broad range of reconfiguration actions, at all layers,
can be supported.

e Such policies are defined through declarative rule languages
and exploit knowledge models describing the node status
and characteristics. Writing and updating such policies is a
fairly easy process and does not require changes in the
algorithms implementing the various services in the node.

The main motivation for this work was provided by the EU-
funded IPAC (Integrated Platform for Autonomic Computing)
research project (ICT framework). In Section 2, we describe the
basic ideas and ingredients of the IPAC platform. Next, we
describe in more detail the architecture and implementation of an
IPAC node in Section 3. In the same section the middleware
services implemented in the context of the IPAC platform are
presented. The basic mechanisms for reconfiguration and the
relevant workflows are discussed in Section 4. In this section we
also present a sample use case for better describing the
reconfiguration internals. The interested reader can find more
details on the implementation of the proposed knowledge-based
framework in Section 5. In Section 6, an extensive experimental



evaluation is performed that demonstrates the functionality of our
system. The experimental results involve the deployment of the
proposed system in real mobile devices as well as simulated
scenarios. Finally, the paper concludes with some related work
(Section 7) and directions for future research (Section 8).

2. MOTIVATION
2.1. The IPAC Platform

This work has been performed in the context of the Integrated
Platform for Autonomic Computing (IPAC) project [11]. IPAC
aims at the delivery of a service creation and runtime (service
provision) environment for autonomic nodes. IPAC tries to address
several challenges of autonomic computing, such as reliable and
efficient algorithms for information dissemination in autonomic
environments, developer-friendly application creation, automatic
discovery of deployed sensors and knowledge-based node
reconfiguration. In this subsection, we briefly describe the overall
platform. In the following sections we will focus on the
reconfiguration facilities of the platform.

The main parts of the IPAC platform (Figure 1) can be
summarized as follows:

e A developer-friendly graphical user interface (GUI) for
building and debugging IPAC applications [18]. This GUI
also comes with a domain-specific application definition
language and the respective workflow language that

updates or even in a closed group of members where
confidentiality is a prerequisite. In general, IPAC supports
applications that mainly exchange simple data (human-created
messages, sensor values etc.) in very highly dynamic environments
(e.g., vehicular ad hoc networks). Of course more sophisticated
applications can be supported but the main intention is to provide
simple applications that can be created and used by a large target
group of users, in diverse environments and application domains.
The IPAC middleware provides all the required basic
functionality, in the form of services, to the deployed applications.

2.2. Requirements for Reconfiguration

Mobile and autonomic computing environments contain the
concept of dynamic changes and updates by nature. Hence, in
order to effectively support context-aware applications in such
environments, adaptivity to context changes is a crucial issue.
Reconfiguration, at least in the context of this paper, involves all
node settings that affect resources used by the deployed
applications. Examples of such resources are: the communication
interface and protocol, the user interface modality and layout, the
storage allocated to each application and the application lifecycles.

In the context of the IPAC platform, three essential types of
reconfiguration actions have been identified and supported:

(a) Periodic checks for reconfiguration. This type of
reconfiguration is triggered by the middleware itself and not by
some application request. It mainly tries to “optimize” the node
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e Adoption of the IEEE 1451 [10] standard for
implementing plug-and-play (smart) sensors. IEEE 1451
is an evolving standard that promises a new era of sensor-
enabled applications, through easy integration of diverse
sensor technologies.

e  Collaborative context-awareness. IPAC nodes can use
contextual information for adapting the application
execution even if they do not have attached sensors.
Specifically, they can “harvest” sensor data and
contextual events from their neighbourhood through a
publish/subscribe mechanism [5].

The IPAC platform aims at supporting embedded, intelligent,
collaborative and context-aware applications in mobile nodes.
IPAC can support a wide variety of applications targeting to a
large group of users, in diverse environments and application
domains. It is a flexible platform capable of implementing quite
diverse application scenarios. It may be used in simple messaging
systems, such as advertisements or weather updates, in emergency

Interfaces IPAC Node

Figure 1. The IPAC Ecosystem

(b) Check for reconfiguration on application startup. An
application may not be able to run, even if it can be supported in
general by the node. This may happen if the application needs
some resources that are currently used by other applications, or the
current settings (as defined by already running applications) do not
match the preconditions for execution of the blocked application.

(c) Explicit request by application. Every application is able to
request certain reconfiguration actions to be performed during its
execution. The middleware checks if such operations can be
applied and informs the corresponding application respectively.

3. SYSTEM OVERVIEW

3.1.Node Description
The architecture of an IPAC node is depicted in Figure 2. The
main components of a typical IPAC node follow:



IPAC middleware. 1t provides all the services required for
supporting context-aware applications in nomadic environments.
More details on the way context-awareness is supported in IPAC
can be found in [5].

The hardware, OS and Java Virtual Machine (JVM) of the node.

OSGi services [9] running within such a framework and providing
utilities to the IPAC middleware services.

Short Range Communication Component (SRCC). This component
encompasses all the wireless communication capabilities required
for the ad hoc networking of the node. Specifically, it provides
various short range communication interfaces (such as IEEE
802.11 ad hoc mode, WiseMac [12]). The communication is based
on a probabilistic broadcasting data dissemination algorithm [8]
that suits such dynamic mobile environments. The information
dissemination schemes are also implemented here.

Sensor Elements Component (SEC). It provides retrieval of
measurements from sensors attached to the node and advanced
sensor management routines (e.g., automatic discovery of new
sensors, change of sampling frequency).

IPAC applications. They are self-described and self-contained
applications that include the application logic, an application
profile, and, optionally, some user interface.
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Figure 2. IPAC Node Overview

3.2. Middleware Components and Services

Inside the middleware there are several services and
components. In this section we will describe how these
components are involved in the reconfiguration processes:

Application Manager. It controls and manages the application
lifecycle on the node and makes the application profile available
during the reconfiguration processes.

Scheduler. This service is used by all other middleware services
that need to schedule tasks that are performed periodically or in
predefined moments in the future. The reconfiguration processes
exploit scheduling for periodically checking and enforcing the
corresponding policies.

SRCC Proxy. This component is responsible for abstracting the
Short Range Communication interfaces towards the applications.

These interfaces are regarded as shared resources and are subject
to reconfiguration.

SEC Proxy. Similarly to the SRCC Proxy, this component
abstracts the sensors attached to a node.

Storage Service. This component makes information available
for later use, either within the node or through transmitting it over
the radio interface.

Reasoner Service. The Reasoner service constitutes the core
component for realizing the autonomic behaviour of the IPAC
nodes. Specifically, it is a Prolog-based engine able to support
inferences over the IPAC models and policies. Reasoner is able to
drive the self-adaptation process of the IPAC nodes and check
possible conflicts regarding the resources shared among the IPAC
applications, as well.

Reconfiguration Service. The reconfiguration service manages all
the processes that affect the self-adaptation of the node and the
configuration of its settings. This service uses the API provided by
the Reasoner service in order to perform certain reasoning tasks.
More details are provided in the rest of the present paper.

Event Checker Service (ECS). It implements the event-driven
paradigm of the IPAC approach. For example, it is responsible for
checking the conditions that may trigger the events defined in the
profile of an application and may lead to a reconfiguration action.

User Interaction Service. An application may need to receive
input or give feedback to a human user. Similarly to the SRCC
Proxy, the user interfaces provided by this component are
considered as subject to reconfiguration.

4. IPAC KNOWLEDGE PLANE

Both context-aware re-configuration and interoperability
between nodes with different features call for an intelligent system
behavior, depending on the characteristics of each individual case
(contextual information, node features, number of adjacent nodes,
etc.). To meet these requirements, an architecture shift is
necessary in the design of embedded systems middleware.
Specifically, a new approach similar to the Knowledge Plane [23]
is called for. Such approach includes all the necessary components
in order to create a distributed cognitive system, which is aware of
its goals, limitations, and resources. The IPAC Knowledge Plane
operates also as a broker since it is able to disseminate to all
layers of an IPAC node the status of the SRCC, SEC and other key
modules of the service layer. For example, it may give feedback to
the dissemination algorithms about the physical-layer networking
operation of peer nodes. Some of the functions of this knowledge-
based framework follow:

e models the possible situations (i.e., context) of the
node/system,

e stores the situation-information collected from the

information sources (e.g., sensors),
e  reasons over contextual data,
e identifies possible conflicts in the system configuration,
e infers information based on real-time observations.

The ingredients of this plane are described in this section.



4.1. Language Expressiveness and Tractability

of Reasoning

The selection of the appropriate knowledge technologies
involved two main steps: (a) the selection of an expressive logical
formalism that meets the specified requirements (e.g., definition
of rules and policies), and, (b) the selection of an efficient module
able to reason over such language. The nature of the IPAC
platform imposes certain restrictions regarding the adopted
knowledge technologies. Since IPAC targets at mobile devices, the
knowledge-based components of the middleware architecture had
to be implemented with lightweight technologies that offer: (a)
tractable reasoning services (i.e., low reasoning times and memory
requirements), and, (b) compact representation of the knowledge
bases.

Regarding the selection of the appropriate knowledge
representation language, the desired expressiveness is that of
typical (Horn) rules with conjunctions of predicates in the body
and single predicates in the head of the rules. Prolog-based
implementations provide a very mature technology and its syntax
and representation is very compact, in comparison to other
technologies. Before deciding on the reasoning module that was
used in IPAC, other solutions were also investigated, such as
forward-chaining rule engines, and Description Logic reasoners.
However, such solutions do not provide efficient reasoning
services, thus making the execution of even simple reasoning tasks
on embedded devices hard. More details about the adopted
formalisms and tools can be found in Section 5.

4.2. Models and Profiles

In the context of this work, specific models are exploited in
order to provide a common vocabulary to both the middleware
services and applications. These models target at facilitating the
self-reconfiguration of the nodes. Since they are used by the
Reasoner and the Reconfiguration services of the IPAC
middleware, the models are expressed in a declarative way
through Prolog statements. Specifically, the following models and
profiles are considered:

4.2.1. Application Profile

The application profile mainly consists of simple expressions
representing the basic features of the IPAC application. These
expressions concern generic description of the application or the
requirements that a node should satisfy in order to deploy and
execute the application. The former refers to information such as
the application name, the application ID, its version or the
supported user groups. Such knowledge is used in order to identify
whether an application should be deployed to a node (e.g., newer
version) or to allow user to join a group in the context of this
application. As a result, the application profile takes advantage of
the vocabulary provided by the sensor model.

On the other hand, the execution requirements of an IPAC
application typically concern preconditions that a node should
fulfill before running the application such as communication
requirements (e.g., communication range required, average size of
message payload) and application parameters (e.g., required types
of user interfaces, estimated storage space). These requirements
are matched with the node capabilities provided by the node
profile within the IPAC middleware. If such matching is
successful (i.e., the node satisfies the application requirements)

the application is deployed to the node and its execution is started.
Otherwise, the node either deletes it or deploys it and sets it to an
inactive state.

Furthermore, the application events that constitute part of the
application workflow are expressed declaratively in the
application profile. Every application registers the types of
information that is interested in through these events. The
respective services (e.g., ECS) are responsible for creating the
events at runtime by checking sensor data, incoming messages,
etc. Each event is defined through a name and a number of
conditions. A simple example demonstrating an application profile
is provided below:

usesSensor (appID03, smoke det 1).

type (smoke det 1, smoke detector).
usesSensor (appID03, temp sensor 1).

type (temp sensor 1, temperature sensor).
requiresUI (appID03, visual).

event (fire_alarm)
temp sensor 1>=20.

:— smoke det 1>=0,

In this example, the profile of an application that uses a smoke
detector and a temperature sensor and requires a visual interface is
given. In case of smoke detection and temperature exceeding a
limit value (i.e., 20 degrees), a specific event named “fire_alarm”
is raised.

4.2.2. Sensor Model

It provides a common vocabulary about sensors and their
features. This way, a set of common terms is shared between the
nodes and the different components of the platform, as well. This
model defines the concepts (i.e., classes, terms) that concern the
basic characteristics of sensors and the relationships among them.
Specifically, it contains information about the type of the sensor
(e.g. positioning sensor, movement detector). Such information is
modelled through predicate hierarchies (taxonomies) in order to
take advantage of instances classification during the execution of
reasoning processes. For example, a sensing element that is
defined as a temperature sensor is also classified as a sensor
(which could be considered as the top class) aiming to identify
environmental conditions. Moreover, the model is capable of
representing a description of the sensor, the types of values that it
produces and their measurement units. For example, a temperature
sensor may return integer values denoting Celsius degrees. Some
example statements of the sensor model that define a part of the
designed hierarchy of sensor types are the following:

sensorType (X) :-
environmentalConditionSensor (X) .
environmentalConditionSensor (X) :-
temperatureSensor (X) .
temperatureSensor (temperature sensor).

4.2.3. Node Profile

It defines concepts and relationships that refer to the basic
features of an IPAC node. It is the core of the metadata models
used in the platform. Specifically, in order to express such
knowledge, this profile takes advantage of the vocabulary offered
by the sensor model. Some metadata belonging to the node profile
are the communication interfaces provided by the node, its name,
the available storage space and the supported user interfaces.



Furthermore, it provides information about the sensors that are
attached to the node. An example of a node profile follows:

node (node03) .

supportsUI (node03,visual) .

hasSensor (node03,sensor05) .

hasSensor (node03,sensor06) .
hasCommInterface (node03,ieee 802 11 int).
type (sensor(05, temperature sensor).

type (sensor06, smoke detector).

The aforementioned statements describe a node (with ID node03)
with a temperature sensor (i.e., sensor05) and a smoke detector
(i.e., sensor06) attached. The node also supports visual interfaces
and the IEEE 802.11 communication interface, as well.

4.3. Reconfiguration Policies

The IPAC Knowledge Plane also involves some predefined
reconfiguration policies that trigger updates in its settings in order
to achieve optimal operation of the node. The reconfiguration
policies are rules defining changes that could be performed so that
the optimal operation of the node is guaranteed. In general, these
hard-coded policies aim to prevent the occurrence of unacceptable
situations that could deteriorate system performance. Moreover,
they may raise events in case the system status is error-prone.
Similarly to the application events, the node policies are also
represented declaratively, since they constitute part of the overall
knowledge base. Two sample reconfiguration policies are:
policy (hasCommInterface,X,wisemac int) :-
numberOfNeighbors (X,N), N=0, node (X),
hasCommInterface (X,ieee 802 11 int).
policyPA(turninterfaceOn,wisemac int) :-
numberOfNeighbors (X,N), N=0, node (X),
hasCommInterface (X,ieee 802 11 int).

policy (hasCommInterface,X,ieee 802 11 int):
numberOfNeighbors (X,N), N=0, node (X),
hasCommInterface (X,wisemac int).

policyPA(turnIinterfaceOn,ieee 802 11 int) :-
numberOfNeighbors (X,N), N=0, node (X),
hasCommInterface (X,wisemac int).

A natural language description for the above set of rules is:
“Change the current communication interface in case no
neighbours have been detected”. Hence, the node should switch
from its current communication interface to another (e.g., from
IEEE 802.11 to WiseMac). The policy predicate defines the new
facts that should be asserted and the policyPA predicate defines
the middleware method call that applies this reconfiguration (in
this case the turninterfaceOn() method of the SRCC Proxy
service). In that case, the node profile is updated with the
information that no other node has been detected in the vicinity by
the node. Since the policies are checked periodically, the next time
that such a check will take place, the Reconfiguration service will
call the appropriate middleware services (e.g., the SRCC Proxy to
modify the communication interface, the User Interaction Service
to change the user interface) in order to make the required
modification and will also update the node profile.

4.4. Reconfiguration Workflow

The overall approach that has been adopted for the design of
IPAC middleware is that applications access directly the
middleware services through well defined interfaces (i.e., method
calls), but all methods that are responsible for altering the
operation/configuration of the services are called through the
Reconfiguration Service. The rationale behind this decision is that
service and device settings are a shared resource and so it should
be managed by a central entity. Moreover, global cross-layer
knowledge may be necessary for some reconfigurations. We
should not expect applications to maintain such knowledge.

The typical reconfiguration workflow is as follows: An
application sends a request for reconfiguration (it may affect a
middleware service or the node/device settings). There are two
main types of requests: the soft and the hard ones. The former are
associated with some timeValidity parameter (e.g., “whenever,
within the next five minutes, the Ul is able to switch to sound
mode, do it”). The applications do not require feedback from the
system for such requests. Moreover, the applications should not
make any assumptions on them. At the most, they can receive a
notification when the requested change is performed. On the other
hand, the hard requests should be executed immediately (if at all)
and the application should receive some feedback whether the
reconfiguration has been performed or not.

Once a reconfiguration request arrives in the Reconfiguration
service, the Reasoner service is invoked. The latter service decides
if it is consistent with the current system status to perform the
change requested. If not, and,

a) it is a soft request with timeValidity set, then it just
reschedules the request and checks it after a preset period
of time.

b) it is a hard request, it sends a response “reconfiguration
not possible” to the Response Queue.

If the change is possible, a message with the request
parameters is sent to the Dispatcher Queue. Then the
Reconfiguration Service consumes this message and performs the
change requested with a synchronous method call. The result is
inserted to the Response Queue (either “Success” or “Failure”).
Finally, once a message destined for an application arrives at the
Response Queue, the respective application consumes it and
continues executing its application logic.
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Note that there could also be other services listening to the
Response Queue. For example, if we want to provide self-healing
functionality, we could observe which services return “Failure”
and how often and use this information for recovering from this
situation. All this interaction is depicted in the UML Sequence
Diagram of Figure 3.

4.5. Reconfiguration Scenario

This use-case scenario describes the main tasks that take place
within an IPAC node during the reconfiguration phase. The
scenario assumes that application A (e.g., with id app02) is stored
to an IPAC node (e.g., with id node03) in order to be deployed
while other applications are already running inside the node and A
requires audio interface to run properly (e.g., the statement
requiresUl(app02,audio) has been added to its profile). The node
supports both visual and audio user interfaces. Initially, it is
assumed that the visual interface has been activated. Such
knowledge is explicitly captured in the node profile through the
following Prolog statements:

supportsUI (node03, visual).
supportsUI (node03, audio).
hasUI (node03, visual).

It is also assumed that the following event is defined in the
profile of the application A:

event (fire alarm) :-smoke sensor 1>=0,
temp sensor 1>=20.

This rule denotes that an event named “fire alarm” is
triggered when there some substance of smoke in the air and the
temperature exceeds the limit of 20 degrees. Additionally, the
application A requires a minimum communication range of 10
meters and an audio user interface in order to run (denoted in its
profile).

First, the application manager checks whether the
requirements of the new application are consistent with the
requirements imposed by the applications that already run in the
IPAC node. This is performed through the consistency checking
mechanism provided by the Reasoner. Assuming that none of the
already running applications have imposed any requirements
regarding the user interface of the node, it can be switched to
audio without any possible conflicts. Hence, a reconfiguration
request is scheduled in order to perform the desired
reconfiguration action.

Regarding the policy checking mechanism, we assume that a
policy denotes that in case there is no other node in the
neighbourhood, the communication interface should change (see
example in Section 4.3). In that case, the node profile is updated
that no other node has been detected close to it through the SRCC.
Hence, a policy violation is detected the first time that the
checkPolicy() method is called. This method checks if any node
reconfiguration can be performed based on the defined policies
and returns the respective ReconfRequest objects.

The checkPolicy() method invokes the Reasoner service in
order to trigger the aforementioned rules (if all of their conditions
are satisfied). If triggered, the method parses the asserted policy
predicates and returns them to the method caller. For example, if
the first policy rule is triggered, the following fact is returned
(node03 is the ID of the node):

hasCommInterface (node03, wisemac int).

If this function returns some facts, then these are used to
create a new ReconfRequest object that is subsequently passed as
an argument to the checkReconfRequest() method. This method
checks if the request is in conflict with the current node
configuration. If not, the facts of the ReconfRequest are asserted to
the knowledge base and the respective middleware service
methods are invoked.

5. IMPLEMENTATION DETAILS

The IPAC Knowledge Plane adopts a Prolog-based scheme in
order to support the desired self-adaptive behaviour of the nodes.
Hence, all the models, the policies and the application profiles are
expressed as Prolog predicates. The implementation of this
functionality takes advantage of Java Internet Prolog (JIProlog) [1]
engine that constitutes a compact and computationally efficient
Prolog interpreter facilitating the integration of Java and Prolog.
JIProlog provides a Java API for creating and handling Prolog
files. This API supports various management capabilities over
knowledge bases that are expressed in Prolog terms (e.g., loading
of multiple files, query answering). It is also a cross platform
framework that enables the development of lightweight reasoning
services on devices with restricted resources. Specifically, the
J2ME (MIDP 2.0, CLDC 1.0) version of JIProlog was adopted for
the IPAC Reasoner service. This solution performs better than
reasoning over other knowledge representation methodologies,
such as lightweight ontologies, since no efficient reasoning
modules are available for these formalisms in resource constrained
devices [6].

6. EXPERIMENTAL EVALUATION

In this section, we discuss the performance of the
reconfiguration tasks in typical IPAC nodes. Specifically, certain
simulated scenarios were performed in order to quantify the
loading times of the application profiles, the service response time
and the memory consumption incurred during reconfiguration
tasks. All measurements were performed in ASUS Eee PC 900
netbooks [7] with an Intel (R) Celeron (R) processor running at
900MHz and 1GB of main memory. These nodes are able to use
both IEEE 802.11 and Wisemac communication interfaces and
were equipped with a number of sensor devices to capture context
information.

The first measurement concerns the time needed to load the
application profiles. While the rest of the models and profiles used
(e.g., sensor model, node profile, etc.) can be loaded just once
during the initialization of the IPAC platform, the application
profiles have to be loaded and retracted at runtime whenever an
application starts or stops operating in the node. The experiments
demonstrate a linear dependency between the loading times and
the number of application profiles. Specifically, the required time
is proportional to the number of profiles inserted into the main
memory. For example, it is worth mentioning that in case of two
profiles, the total loading time is about 15ms. Even when 20
applications were sequentially loaded, the total loading time does
not exceed the 125ms which is an acceptable delay in real time
applications.

When a new application profile is loaded, the JIProlog engine
inserts all the relevant rules and the facts to the main memory. As



a result, the query answering process of the knowledge base is
performed very efficiently. For example, even the evaluation of a
query containing predicates defined through multiple Prolog rules
with several conjunctive terms in their body requires less than
16ms. The tests performed also indicate that such performance
persists even when multiple application profiles are loaded to the
main memory. Hence, real-time checks for complex queries (e.g.,
compatibility of a newly deployed application) do not negatively
impact the overall response time of the system.

Another issue examined was the sensitivity of the system
according to context changes. Specifically, a modification of the
environment (e.g., absence of other nodes in the neighborhood)
may lead to the execution of certain reconfiguration policies (e.g.,
switch to another communication interface). Figure 4 presents the
times between a context change that took place and the
corresponding node reconfiguration. These times indicate the
degree in which the system is responsive to context changes. The
presented times include (a) the update of the knowledge base
according to the modification made, (b) the policy execution, (c)
the check of the applicability of the requested reconfiguration,
and, (d) the execution of the reconfiguration. As described earlier,
the execution of policies is performed very efficiently (in the main
memory) and the reconfiguration is achieved through simple
method calls. Since the policy execution is performed periodically
(i.e., not asynchronously) the required time is mostly dependent on
the policy checking period.
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Figure 4 presents the mean times needed to perform the node
adaptation across several policy checking periods. One can
observe that these times are approximately the half of the policy
checking period used. For example, using a policy checking period
of 1 sec, the mean reconfiguration time is 546ms, while setting the
period to 20 sec the mean reconfiguration time is 10425 ms. This
is anticipated since context changes occur at random. Hence,
taking into account that the process of checking the policies does
not require a significant amount of time, the policy checking
period can be set to a small value (e.g., 1 sec) in order to increase
the system throughput.

Finally, we measured the memory consumption of the
reconfiguration process depending on the number of the
application profiles loaded in main memory (Figure 5). The mean
size of each profile was about 4 KBs. When a single application is
running in the node the total memory required was 20648 KBs
(including all the required services, i.e., the Reasoner, the
Scheduler and the Reconfiguration services) while in the case of

20 application profiles the memory needed was measured 21214
KBs. Hence, the mean memory size required for each profile was
about 25 KBs. This is caused by the internal data structures and
mechanisms used by the JIProlog engine when a new profile is
added in order to answer possible queries more efficiently.
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7. RELATED WORK

There are several attempts in the areas of autonomic
computing and reconfigurable systems aiming to provide adaptive
functionality and services. MASS [20] is an ontology-based
middleware, aiming to enhance the design, development and
provisioning of context-aware applications. It exploits ontologies
to express semantic information in mobile devices with limited
capabilities, which allows for automated reasoning and adaptation
according to user profile and device capabilities. A similar
approach is discussed in the Sense Project [21] which focuses on
the adaptive behavior of the network processes and management.
Furthermore, EMMA Project [22] emphasizes the seamless
collaboration of wireless sensing elements in order to achieve
intelligent behavior of services. However, none of the
aforementioned platforms provides cross-layer reconfiguration of
both applications and node settings.

In the area of mobile service intelligence and reasoning, a
framework capable of supporting ontology processing is proposed
in [4]. The system takes advantage of RDF/OWL ontologies to
represent contextual information stemming from sensors and
provide reasoning and query answering services over the acquired
data. Nevertheless, the system does not investigate the concept of
re-configurability since it focuses on the knowledge management
processes.

A service discovery framework for mobile music selection is
presented in [3]. The system exploits ontological models to
capture user preferences and provide personalized discovery of
audio content in mobile devices. However, the proposed
framework focuses on the concepts of ontology-based relaxation of
preferences and semantic matchmaking and does not investigate
the re-configurability of the supported applications and devices.

A policy-based information model for mobile ad hoc networks
is presented in [17]. Specifically, the proposed solution allows for
dynamic reconfiguration of the parameters that affect the routing
protocol of the network. Also, a policy-based approach for
reconfiguration in autonomous networks is presented in [15]. Such
approaches lack extensibility since they are mainly based on hard-
coded policies and they focus on specific reconfiguration actions.



8. CONCLUSION AND FUTURE WORK

In this paper we presented a working implementation of a
cross-layer reconfiguration framework capable of supporting
context-aware applications in autonomic mobile nodes. The
framework exploits knowledge management technologies and
techniques in order to provide a flexible and extensible solution to
node reconfiguration. All node configuration data are expressed
through widely-established formalisms, such as Prolog rules and
facts. The implemented architecture can support a broad range of
reconfiguration scenarios. The functionality and performance of
the system was evaluated through deployment on real nodes.

Surely, several aspects of the systems can be improved and are
part of our future plans on this area. We intend to use more
modern  knowledge  representation languages for  the
implementation of the knowledge plane. Specifically, the use of
lightweight, but adequately expressive, ontologies will be further
investigated. The main problem with using ontologies is the lack
of efficient reasoning engines in resource-restricted devices. Since
the existing research prototypes [13] have not been tested in real
world deployments, we plan to proceed with an assessment of such
solutions in the near future.

Another aspect that could be optimized involves the policy
checking mechanism of the system. As described, the current
IPAC approach checks for possible policy violations periodically.
The selection of the appropriate value for this parameter could be
optimized by taking into consideration a number of other issues
like the history information of the node and the frequency of the
policy violations. Event-based mechanisms to detect the context
changes that affect the execution of policies should be also
explored.
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